Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Sai-Rong Fan, ${ }^{\text {a }}$ Long-Guan Zhu, ${ }^{\text {a }}$ * Hong-Ping Xiao ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310007, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: chezlg@zju.edu.cn

## Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in solvent or counterion
$R$ factor $=0.065$
$w R$ factor $=0.148$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

## cis-Diaquabis(1,10-phenanthroline)manganese(II) 3-carboxylato-4-hydroxybenzenesulfonate tetrahydrate

The cation interacts with the anion in the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$, through hydrogen bonding with the coordinated water molecules in a hydrogen-bonded sheet structure. The Mn atom is in an octahedral environment in which the two water molecules occupy cis positions.

## Comment

A study on a heterocyclic complex of cobalt(II) 3-carboxylato-4-hydroxybenzenesulfonate has documented the presence of two covalent bonds between the metal and the dianion, one with the carboxylate portion and the other with the sulfonate portion (Fan et al., 2005). With the manganese analog, a similar synthesis has yielded a salt in which the 3-carboxylato-4-hydroxybenzenesulfonate dianion is not directly linked to the metal atom.


$4 \mathrm{H}_{2} \mathrm{O}$
(I)

The title compound, (I), exists as a tetrahydrate (Fig. 1), in which the uncoordinated water molecules interact with the cation and anion to give a sheet structure (Fig. 2). The bis-phenanthroline-chelated Mn atom shows an octahedral coordination and the two coordinated water molecules are aligned cis with respect to each other.

## Experimental

Manganese sulfate hydrate ( $0.035 \mathrm{~g}, 0.2 \mathrm{mmol}$ ) and 5 -sulfosalicylic acid dihydrate $(0.051 \mathrm{~g}, 0.2 \mathrm{mmol})$ were dissolved in water ( 15 ml ). The solution was mixed with a solution of 1,10 -phenanthroline $(0.040 \mathrm{~g}, 0.2 \mathrm{mmol})$ in water $(4 \mathrm{ml})$ and methanol $(1 \mathrm{ml})$. After 2 d , pale-yellow crystals of the hydrate separated from solution. The yield was $64 \%$ based on the metal salt.

Received 17 January 2005 Accepted 14 February 2005 Online 19 February 2005


Figure 1
ORTEPII plot (Johnson, 1976) of (I). Displacement ellipsoids are drawn at the $50 \%$ probability level.


Figure 2
Packing diagram of (I), showing the sheet-like structure. Dashed lines indicate hydrogen bonds.

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0576 P)^{2}\right. \\
& \quad+1.2662 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.45 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.148$
$S=1.20$
5737 reflections
481 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

| $\mathrm{Mn} 1-\mathrm{O} 2 w$ | $2.125(3)$ | $\mathrm{Mn} 1-\mathrm{N} 3$ | $2.281(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Mn} 1-\mathrm{O} 1 w$ | $2.138(3)$ | $\mathrm{Mn} 1-\mathrm{N} 4$ | $2.266(3)$ |
| $\mathrm{Mn} 1-\mathrm{N} 1$ | $2.252(3)$ | $\mathrm{S} 1-\mathrm{O}^{\prime}$ | $1.408(7)$ |
| $\mathrm{Mn} 1-\mathrm{N} 2$ | $2.260(3)$ |  |  |
| $\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{O} 2 w$ | $91.6(1)$ | $\mathrm{O} 2 w-\mathrm{Mn} 1-\mathrm{N} 1$ | $91.2(1)$ |
| $\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 1$ | $166.2(1)$ | $\mathrm{O} 2 w-\mathrm{Mn} 1-\mathrm{N} 2$ | $101.7(1)$ |
| $\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 2$ | $92.4(1)$ | $\mathrm{O} 2 w-\mathrm{Mn} 1-\mathrm{N} 3$ | $166.5(1)$ |
| $\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 3$ | $89.0(1)$ | $\mathrm{O} 2 w-\mathrm{Mn} 1-\mathrm{N} 4$ | $93.5(1)$ |
| $\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 4$ | $96.1(1)$ |  |  |

Table 2
Hydrogen-bonding geometry ( $\AA \AA^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 3-\mathrm{H} 3 \mathrm{o} \cdots \mathrm{O} 2$ | 0.85 | 1.78 | 2.512 (5) | 143 |
| $\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 3 w$ | 0.85 | 1.89 | 2.74 (1) | 177 |
| $\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 4 w$ | 0.85 | 1.86 | 2.687 (4) | 166 |
| $\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 1$ | 0.85 | 1.76 | 2.601 (4) | 170 |
| $\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 4^{\mathrm{i}}$ | 0.84 | 1.94 | 2.776 (5) | 175 |
| $\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 4^{\text {i }}$ | 0.84 | 1.94 | 2.685 (13) | 147 |
| $\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 4^{\mathrm{i}}$ | 0.88 | 1.96 | 2.84 (1) | 174 |
| $\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 5^{\text {ii }}$ | 0.85 | 1.94 | 2.791 (5) | 180 |
| $\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O}^{\prime \mathrm{ii}}$ | 0.85 | 2.11 | 2.91 (2) | 156 |
| $\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} w$ | 0.85 | 1.90 | 2.748 (4) | 172 |
| $\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 6^{\text {iii }}$ | 0.85 | 2.07 | 2.908 (6) | 168 |
| $\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 4^{\text {iiii }}$ | 0.85 | 2.02 | 2.78 (1) | 148 |
| $\mathrm{O} 5 w-\mathrm{H} 5 w 2 \cdots \mathrm{O} 2^{\text {iv }}$ | 0.85 | 1.94 | 2.791 (4) | 175 |
| $\mathrm{O} 6 w-\mathrm{H} 6 w 1 \cdots \mathrm{O} 5^{\text {ii }}$ | 0.86 | 2.28 | 3.098 (7) | 160 |
| $\mathrm{O} 6 w-\mathrm{H} 6 w 1 \cdots{ }^{\text {5 }}{ }^{\text {iii }}$ | 0.86 | 2.20 | 2.89 (2) | 137 |
| $\mathrm{O} 6 w-\mathrm{H} 6 \mathrm{w} 2 \cdots \mathrm{O} 3 w$ | 0.85 | 2.13 | 2.61 (1) | 116 |

Symmetry codes: (i) $2-x, 2-y, 2-z$; (ii) $x-1, y, z-1$; (iii) $1-x, 2-y, 2-z$; (iv)
$x-1, y, z$.

## Crystal data

| $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot-$ | $Z=2$ |
| :--- | :--- |
| $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $D_{x}=1.496 \mathrm{Mg} \mathrm{m}^{-3}$ |
| $M_{r}=739.61$ | Mo $K \alpha$ radiation |
| Triclinic, $P \overline{1}$ | Cell parameters from 4195 |
| $a=10.0639(6) \AA$ | reflections |
| $b=12.2445(7) \AA$ | $\theta=2.4-24.3^{\circ}$ |
| $c=13.9291(8) \AA$ | $\mu=0.54 \mathrm{~mm}^{-1}$ |
| $\alpha=96.985(1)^{\circ}$ | $T=295(2) \mathrm{K}$ |
| $\beta=101.406(1)^{\circ}$ | Prism, pale yellow |
| $\gamma=98.851(1)^{\circ}$ | $0.33 \times 0.23 \times 0.19 \mathrm{~mm}$ |
| $V=1641.90(17) \AA^{\circ}$ |  |
| Data collection |  |
| Bruker SMART APEX area- | 5737 independent reflections |
| detector diffractometer | 5163 reflections with $I>2 \sigma(I)$ |
| $\varphi$ and $\omega$ scans | $R_{\text {int }}=0.023$ |
| Absorption correction: multi-scan | $\theta_{\text {max }}=25.0^{\circ}$ |
| $(S A D A B S ;$ Bruker, 2002) | $h=-11 \rightarrow 11$ |
| $T_{\text {min }}=0.859, T_{\text {max }}=0.905$ | $k=-14 \rightarrow 14$ |
| 11924 measured reflections | $l=-16 \rightarrow 16$ |
|  |  |

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$--
$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=739.61$
Triclinic, $P \overline{1}$
$a=10.0639$ (6) A
$c=13.9291$ (8) $\AA$
$\alpha=96.985(1)^{\circ}$
$\beta=101.406$ (1) ${ }^{\circ}$
$\gamma=98.851(1)^{\circ}$

Data collection
Bruker SMART APEX areadetector diffractometer $\varphi$ and $\omega$ scans
Absorption correction: multi-scan

11924 measured reflections
$Z=2$
$D_{x}=1.496 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4195
reflections
$\theta=2.4-24.3^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, pale yellow
$0.33 \times 0.23 \times 0.19 \mathrm{~mm}$

5737 independent reflections
163 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=25.0$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 16$
2.281 (3)
1.408 (7)
91.2 (1)
101.7 (1)
93.5 (1)
$\xrightarrow{96.1(1)}$

The sulfonate group was disordered over two positions; the occupancies refined to a 0.81 (1):0.19 (1) ratio when the $\mathrm{S}-\mathrm{O}$ distances were restrained to within $0.01 \AA$ of each other. The aromatic H atoms were positioned geometrically and were included in the refinement in the riding-model approximation $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, as was the hydroxyl H atom $[\mathrm{O}-\mathrm{H}=$ $0.85 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})\right]$. The water H atoms were placed at chemically sensible positions but were not refined $\left[U_{\text {iso }}(H)=\right.$ $\left.1.2 U_{\text {eq }}(\mathrm{O})\right]$. Atom $\mathrm{O} 3 w$ was disordered over two sites, but the H atoms were placed on the major component only; for the O3w and $\mathrm{O} 3 w^{\prime}$ atoms, the displacement parameters were restrained to be nearly isotropic. When the H atoms are positioned in these sites, the shortest $\mathrm{H} \cdots \mathrm{H}$ contact exceeds $2 \AA$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve

## metal-organic papers

structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 50073019) and the University of Malaya for supporting this study.

## References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R., Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005). Acta Cryst. E61, m435m436.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.


[^0]:    © 2005 International Union of Crystallography

