Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sai-Rong Fan,^a Long-Guan Zhu,^a* Hong-Ping Xiao^b and Seik Weng Ng^c

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310007, People's Republic of China, ^bSchool of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(C-C) = 0.007 \text{ Å}$ Disorder in solvent or counterion R factor = 0.065 wR factor = 0.148 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

cis-Diaquabis(1,10-phenanthroline)manganese(II) 3-carboxylato-4-hydroxybenzenesulfonate tetrahydrate

The cation interacts with the anion in the title compound, $[Mn(C_{12}H_8N_2)_2(H_2O)_2](C_7H_4O_6S)\cdot 4H_2O$, through hydrogen bonding with the coordinated water molecules in a hydrogen-bonded sheet structure. The Mn atom is in an octahedral environment in which the two water molecules occupy *cis* positions.

Received 17 January 2005 Accepted 14 February 2005 Online 19 February 2005

Comment

A study on a heterocyclic complex of cobalt(II) 3-carboxylato-4-hydroxybenzenesulfonate has documented the presence of two covalent bonds between the metal and the dianion, one with the carboxylate portion and the other with the sulfonate portion (Fan *et al.*, 2005). With the manganese analog, a similar synthesis has yielded a salt in which the 3-carboxylato-4-hydroxybenzenesulfonate dianion is not directly linked to the metal atom.

The title compound, (I), exists as a tetrahydrate (Fig. 1), in which the uncoordinated water molecules interact with the cation and anion to give a sheet structure (Fig. 2). The bisphenanthroline-chelated Mn atom shows an octahedral coordination and the two coordinated water molecules are aligned *cis* with respect to each other.

Experimental

Manganese sulfate hydrate (0.035 g, 0.2 mmol) and 5-sulfosalicylic acid dihydrate (0.051 g, 0.2 mmol) were dissolved in water (15 ml). The solution was mixed with a solution of 1,10-phenanthroline (0.040 g, 0.2 mmol) in water (4 ml) and methanol (1 ml). After 2 d, pale-yellow crystals of the hydrate separated from solution. The yield was 64% based on the metal salt.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

 $O\bar{R}TEPII$ plot (Johnson, 1976) of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing diagram of (I), showing the sheet-like structure. Dashed lines indicate hydrogen bonds.

Crystal data

 $T_{\min} = 0.859, \ T_{\max} = 0.905$

11924 measured reflections

$[Mn(C_{12}H_8N_2)_2(H_2O)_2]$	Z = 2
$C_7H_4O_6S\cdot 4H_2O$	$D_x = 1.496 \text{ Mg m}^{-3}$
$M_r = 739.61$	Mo $K\alpha$ radiation
Triclinic, P1	Cell parameters from 4195
a = 10.0639 (6) Å	reflections
b = 12.2445 (7) Å	$\theta = 2.4-24.3^{\circ}$
c = 13.9291 (8) Å	$\mu = 0.54 \text{ mm}^{-1}$
$\alpha = 96.985 \ (1)^{\circ}$	T = 295 (2) K
$\beta = 101.406 \ (1)^{\circ}$	Prism, pale yellow
$\gamma = 98.851 \ (1)^{\circ}$	$0.33 \times 0.23 \times 0.19 \text{ mm}$
$V = 1641.90 (17) \text{ Å}^3$	
Data collection	
Bruker SMART APEX area-	5737 independent reflections
detector diffractometer	5163 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.023$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 2002)	$h = -11 \rightarrow 11$

Refinement

L

Λ

Refinement on F^2	v
$R[F^2 > 2\sigma(F^2)] = 0.065$	
$VR(F^2) = 0.148$	
= 1.20	(
737 reflections	Z
81 parameters	Z
I-atom parameters constrained	

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0576P)^2 \\ &+ 1.2662P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.45 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.32 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1Selected geometric parameters (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn1 - O2w	2.125 (3)	Mn1-N3	2.281 (3)
$\begin{array}{cccccccc} Mn1-N1 & 2.252 (3) & S1-O4' & 1.408 (7) \\ Mn1-N2 & 2.260 (3) & & & & \\ O1w-Mn1-O2w & 91.6 (1) & O2w-Mn1-N1 & 91.2 (1) \\ O1w-Mn1-N1 & 166.2 (1) & O2w-Mn1-N2 & 101.7 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N3 & 166.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N3 & 166.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N3 & 166.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N3 & 166.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N3 & 166.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N3 & 166.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & 92.4 (1) & O2w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & O1w-Mn1-N4 & O1w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & O1w-Mn1-N4 & O1w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & O1w-Mn1-N4 & O1w-Mn1-N4 & 92.5 (1) \\ O1w-Mn1-N2 & O1w-Mn1-N4 & O1w-Mn1-N4$	Mn1 - O1w	2.138 (3)	Mn1-N4	2.266 (3)
Mn1-N2 2.260 (3) $O1w-Mn1-O2w$ 91.6 (1) $O2w-Mn1-N1$ 91.2 (1) $O1w-Mn1-N1$ 166.2 (1) $O2w-Mn1-N2$ 101.7 (1) $O1w-Mn1-N2$ 92.4 (1) $O2w-Mn1-N3$ 166.5 (2) $O1w-Mn1-N2$ 92.4 (1) $O2w-Mn1-N3$ 166.5 (2)	Mn1-N1	2.252 (3)	S1-O4′	1.408 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn1-N2	2.260 (3)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1w-Mn1-O2w	91.6 (1)	O2w-Mn1-N1	91.2 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1w-Mn1-N1	166.2 (1)	O2w-Mn1-N2	101.7 (1)
O_{1} Mrs Mrs N2 80.0 (1) O_{2} Mrs N4 02.5 (1)	O1w-Mn1-N2	92.4 (1)	O2w-Mn1-N3	166.5 (1)
$O_1 W = W_{111} = N_5$ 89.0 (1) $O_2 W = W_{111} = N_4$ 95.3 (1)	O1w-Mn1-N3	89.0 (1)	O2w-Mn1-N4	93.5 (1)
O1w - Mn1 - N4 96.1 (1)	O1w-Mn1-N4	96.1 (1)		

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3o···O2	0.85	1.78	2.512 (5)	143
$O1w - H1w1 \cdots O3w$	0.85	1.89	2.74 (1)	177
$O1w - H1w2 \cdots O4w$	0.85	1.86	2.687 (4)	166
$O2w - H2w1 \cdots O1$	0.85	1.76	2.601 (4)	170
$O2w - H2w2 \cdots O4^{i}$	0.84	1.94	2.776 (5)	175
$O2w - H2w2 \cdots O4'^{i}$	0.84	1.94	2.685 (13)	147
$O3w - H3w1 \cdots O4^{i}$	0.88	1.96	2.84 (1)	174
$O4w - H4w1 \cdots O5^{ii}$	0.85	1.94	2.791 (5)	180
$O4w - H4w1 \cdots O5'^{ii}$	0.85	2.11	2.91 (2)	156
$O4w - H4w2 \cdots O5w$	0.85	1.90	2.748 (4)	172
$O5w - H5w1 \cdots O6^{iii}$	0.85	2.07	2.908 (6)	168
$O5w - H5w1 \cdots O4'^{iii}$	0.85	2.02	2.78 (1)	148
$O5w - H5w2 \cdots O2^{iv}$	0.85	1.94	2.791 (4)	175
$O6w - H6w1 \cdots O5^{ii}$	0.86	2.28	3.098 (7)	160
$O6w - H6w1 \cdots O5'^{ii}$	0.86	2.20	2.89 (2)	137
$O6w - H6w2 \cdots O3w$	0.85	2.13	2.61 (1)	116

Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) x - 1, y, z - 1; (iii) 1 - x, 2 - y, 2 - z; (iv) x - 1, y, z.

The sulfonate group was disordered over two positions; the occupancies refined to a 0.81 (1):0.19 (1) ratio when the S–O distances were restrained to within 0.01 Å of each other. The aromatic H atoms were positioned geometrically and were included in the refinement in the riding-model approximation [C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)]$, as was the hydroxyl H atom $[O-H = 0.85 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(O)]$. The water H atoms were placed at chemically sensible positions but were not refined $[U_{iso}(H) = 1.2U_{eq}(O)]$. Atom O3w was disordered over two sites, but the H atoms were placed on the major component only; for the O3w and O3w' atoms, the displacement parameters were restrained to be nearly isotropic. When the H atoms are positioned in these sites, the shortest H···H contact exceeds 2 Å.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve

 $k = -14 \rightarrow 14$

 $l = -16 \rightarrow 16$

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the National Natural Science Foundation of China (No. 50073019) and the University of Malaya for supporting this study.

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, S.-R., Zhu, L.-G., Xiao, H.-P. & Ng, S. W. (2005). Acta Cryst. E61, m435– m436.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.